Problem 3: Unstable Matrix Solution

The Frank matrix is defined as
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We define p,, = det(F, — All,). By taking the Laplace expansion, we obtain
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The terms in the brackets we can write out as
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Combined, we get the recursive relation
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We can use this to show

pn(A71) = (=1)"A7"pu(A).

Hence, the coefficient spectrum is palindromic when 7 is even and anti-palindromic when 7 is odd.



