
Problem 5: Be Squareful - Solution

There were many possible solution approaches to this problem. The one approach that does not work, is to
simply loop over 1 ≤ a ≤ 2 · 106 and check if a and a + k are squareful. Checking if a number is squareful is
difficult, as it basically is a factoring problem. Like factoring problems in general, we can exploit the fact that
we are interested in squarefulness over the entire interval [1, 2 · 106]. All of the solution approaches make use
of this in some way, either through sieving out all non-squareful numbers, cheesily precomputing all squareful
numbers up to 2 · 106, or constructing the squareful numbers iteratively. We focus on the latter solution.

From any squareful number n, we can construct more squareful numbers by multiplying n with some other
number m. For nm to be squareful, all prime factors that do not appear in n should appear at least twice in
m. This condition is also sufficient to guarantee squarefulness of nm. We will take this a step further, and for
some n and prime p, we generate the squareful number np2 if p - n and np if p | n.

More practically, we use a priority queue to loop over these squareful n, as we want to find the smallest square-
ful a such that a + k is squareful as well. Initially, we insert 1, and look at the smallest prime p = 2. Next, for
any squareful n we get out the queue, we insert either np2 if p - n or np if p | n back into the queue, and also
insert n with the next prime p. In this way, we iteratively construct all squareful numbers, starting with their
smallest prime factors. As we know the result will always be at most 2 · 106, we do not insert any numbers
greater than 2 · 106. This bound also allows us to bound the number of primes to consider, as any prime factor
p of a squareful number n ≤ 2 · 106 is at most

√
2 · 106 < 2000, as p2 | n. We can easily compute the primes up

to 2000 on the fly, even by naively checking divisors up to
√

p.

To find the answer, when iterating through the priority queue, we keep track of which prior numbers were
squarefree and for any n that we retrieve from the priority queue, we check if n− k was squareful as well. If
so, we print n− k and return.

1


