
Problem : Quantum Quiz - Solution

Recall the definition of an orthoframe. An orthoframe consists of a set of worlds I and a reflexive symmetric
accessibility relation 6⊥ on I, whose negation we denote by ⊥. Now, the complement of X ⊆ I is defined as

X′ = {i ∈ I | ∀j ∈ X : i ⊥ j}.

And X ⊆ I is called a proposition if

i ∈ X ⇐⇒ ∀j ∈ I : (i 6⊥ j =⇒ j 6⊥ X).

Note the right hand side is by contraposition actually the same as ∀j ∈ X′ : i ⊥ j. Then, we see that the forward
implication is always true, since if i ∈ X, then by definition of X′, we have i ⊥ j for all j ∈ X′. Thus, to prove
something is a proposition it suffices to prove the reverse implication. We have the following lemmas.

Lemma 1. Let X ⊆ I. Then, X′ is a proposition.

Proof. We have to show the reverse implication of the definition of being a proposition. Let i ∈ I be such that
for all j ∈ I, we have i 6⊥ j =⇒ j 6⊥ X′. That is j 6∈ X′′. So, there exists a k ∈ X′ such that k 6⊥ j. Now, note
that as k ∈ X′, k ⊥ x for all x ∈ X. So, j 6∈ X. So, we have that for all j ∈ I, i 6⊥ j =⇒ j 6∈ X. Taking the
contrapositive of this statement, we get ∀j ∈ X, i ⊥ j. That is i ∈ X′, as desired.

Lemma 2. Suppose X ⊆ Y ⊆ I. Then, Y′ ⊆ X′.

Proof. Let i ∈ Y′. Then, for all y ∈ Y, i ⊥ y. In particular, as X ⊆ Y, we have for all x ∈ X, i ⊥ x. So, i ∈ X′.

Lemma 3. For all X ⊆ I, we have X ⊆ X′′. And if X is a proposition, the reverse inclusion also holds. That is by lemma
1, X is a proposition if and only if X = X′′.

Proof. Let i ∈ X. Then, note that for all j ∈ X′, we have i ⊥ j. So, in particular, i ∈ X′′.
On the other hand, suppose X is a proposition. Then, let i ∈ X′′. Then, for all j ∈ X′, we have i ⊥ j. Taking the
contraposition of the implication j ∈ X′ =⇒ i ⊥ j, we get ∀j ∈ I : i 6⊥ j =⇒ j 6∈ X′. Now, as j 6∈ X′ is the
same as j 6⊥ X, we see that as X is a proposition, i ∈ X.

Proposition 4. For X ⊆ I, the minimal proposition containing X is given by X′′.

Proof. Note that by lemma 1, X′′ is a proposition and by lemma 3, X′′ contains X. Now, let P be a proposition
such that X ⊆ P. Then, by lemma 2 and 3, we have X′′ ⊆ P′′ = P. So, X′′ is indeed minimal.

Now, computationally we can represent the reflexive symmetric relation 6⊥ by a non-directed graph where
every vertex has a self edge. Then, for a collection of vertices X, we can compute X′ as the set of all vertices
not connected to X. This can be done linearly in the number of edges using sets for example by iterating over
all x ∈ X and marking their neighbours as not being in X′. Then, all unmarked nodes are in X′. This runs
in O(n + m) time. Applying this operation twice, we obtain X′′ the minimal proposition that contains X in
O(n + m), which is fast enough.
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